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War chess gaming has so far received insufficient attention but is a significant component of turn-based strategy games (TBS) and
is studied in this paper. First, a common gamemodel is proposed through various existing war chess types. Based on the model, we
propose a theory frame involving combinational optimization on the one hand and game tree search on the other hand. We also
discuss a key problem, namely, that the number of the branching factors of each turn in the game tree is huge. Then, we propose
two algorithms for searching in one turn to solve the problem: (1) enumeration by order; (2) enumeration by recursion. The main
difference between these two is the permutation method used: the former uses the dictionary sequence method, while the latter
uses the recursive permutation method. Finally, we prove that both of these algorithms are optimal, and we analyze the difference
between their efficiencies. An important factor is the total time taken for the unit to expand until it achieves its reachable position.
The factor, which is the total number of expansions that each unit makes in its reachable position, is set. The conclusion proposed
is in terms of this factor: Enumeration by recursion is better than enumeration by order in all situations.

1. Introduction

Artificial intelligence (AI) is one of the most important
research fields in computer science, and its related algorithms,
technologies, and research results are being widely used in
various industries, such as military, psychological, intelligent
machines and business intelligence. Computer games, known
as “artificial intelligence’s drosophila,” are an important
part of artificial intelligence research. With the increasing
development of computer hardware and research methods,
artificial intelligence research in traditional board games has
seen some preliminary results. Alus et al. [1] have proven that
Go-Moku’sAI, provided itmoves first, is bound towin against
any (optimal) opponent by the use of threat-space search and
proof-number search. TheMonte Carlo Tree Search (MCTS)
method, based on UCT (UCB for tree search), has improved
the strength of 9 × 9 Go, close to the level of a professional
Kudan [2].

Computer game based on artificial intelligence is a sort of
deterministic turn-based zero-sum game, containing certain
information. Man-machine games can be classified into two
categories: two-player game andmultiplayer game, according
to the number of game players. Most traditional chesses,
such as the game of Go and Chess, belong to the two-player
game category, to which𝛼-𝛽 search based onmin-max search
and its enhancement algorithms such as Fail-Soft 𝛼-𝛽 [3],
Aspiration Search [4], NullMove Pruning [4], Principal Vari-
ation Search [5], and MTD(f) [5] are usually applied. On the
contrary, Multiplayer Checkers, Hearts, Sergeant Major, and
so forth belong to the multiplayer game category [6] which
runs according to a fixed order of actions, with participants
fighting each other and competing to be the sole winner of the
game. Its search algorithm involves 𝑀𝑎𝑥

𝑛 search [7], Para-
noid [6], and so forth. The 𝛼-𝛽 search previously mentioned
based onmin-max search is a special case based on the𝑀𝑎𝑥

𝑛

search and shadow pruning algorithms [7]. Man-machine
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(a) Wargaming (b) SLG game “Battle Commander”

Figure 1: Wargaming and SLG game.

Figure 2: SLG game “Heroes of Might & Magic.”

games can also be classified into two categories: classic board
games and new board games, according to the game con-
tent. Classic board games involve Go, chess, backgammon,
checkers, and so forth, which are widespread and have a long
history. While other board games such as Hex [8], Lines of
Action [9], and Scotland Yard [10] are ancient games, with
the rapid development of modern board games and mobile
client applications they have been accepted bymore andmore
players until their prevalence is comparable to that of the
classic board game. The machine game algorithms of the
board games listed above are all based on𝛼-𝛽 search and their
enhancement algorithms. The MCTS algorithm has devel-
oped rapidly in recent years, being used increasingly in these
board games and getting increasingly satisfactory results [8–
10].

However, not all board games can be solved with the
existing algorithms. Turn-based strategy games (TBS), as well

as turn-based battle simulation games (SLG) (hereinafter col-
lectively referred to as turn-based strategy games), originated
from the wargames [11] that swept the world in the mid-19th
century (Figure 1(a) shows an example of a wargame). With
the introduction of computer technology, this new type of
game, turn-based strategy game, has flourished (Figure 1(b)
shows a famous TBS game called “Battle Commander,” and
Figure 2 shows the popular SLG game “Heroes of Might &
Magic”). Now, TBS games have become the second most
famous type of game after RPGs (role-playing games). With
the blossoming of mobile games, TBS games will have greater
potential for development in the areas of touch-screen oper-
ation, lightweight, fragmented time, and so on. The content
of a TBS game generally comprises two levels: strategic coor-
dination and tactical battle control. The latter level, whose
rules are similar to those of board games, for example,moving
pieces on the board, beating a specified enemy target for
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victory, and turn-based orders, is called the turn-based war
chess game (TBW). The artificial intelligence in TBW is an
important component of TBS games. The AI of modern TBS
games is generally not so intelligent, of which the fundamen-
tal reason is that the AI in its local battle (TBW) is not so
intelligent. How to improve the TBW’s artificial intelligence,
thus improving the vitality of the entire TBS game industry,
is an urgent problem that until now has been overlooked.

Currently, the study of artificial intelligence in turn-based
strategy games is mainly aimed at its macro aspect, and the
research object is primarily the overall macro logistics, such
as the overall planning of resources, construction, produc-
tion, and other policy elements. The main research con-
tents involve planning, uncertainty decisions, spatial reason-
ing, resource management, cooperation, and self-adaptation.
However, studies on artificial intelligence for a specific type of
combat in TBS are scarce, and the attention paid to research-
ing the TBW units’ moves, attacks, and presentation of the
game round transformation, whose AI is precisely the worst
of all parts of the AI in a large number of TBS games, is not
enough. At present, the research related to TBW’s behavior
involves spatial reasoning techniques. Bergsma and Spronck
[12] divided the AI of TBS (NINTENDO’s Advanced Wars)
into tactical and strategic modules. The tactical module
essentially has to decide where to move units and what to
attack. It accomplishes this by computing influence maps,
assigning a value to each map tile to indicate the desirability
for a unit to move towards the tile. This value is computed by
an artificial neural network. However, they unfortunately do
not provide any detail on how such amechanismwouldwork.
Paskaradevan and Denzinger [13] presented a shout-ahead
architecture based on two rule sets, one making decisions
without communicated intentions and one with these inten-
tions. Reinforcement learning is used to learn rule weights
(that influence decisionmaking), while evolutionary learning
is used to evolve good rule sets. Meanwhile, based on the
architecture, Wiens et al. [14] presented improvements that
add knowledge about terrain to the learning and that also
evaluate unit behaviors on several scenario maps to learn
more general rules. However, both approaches are essentially
based on rules for the artificial intelligence, resulting in a lack
of flexibility of intelligent behaviors, a lack of generality as
they depend on a game’s custom settings, and, moreover, a
lack of reasoning for more than one future turn, similar to
common chess games.

At present, research on TBW’s AI from the perspective of
themultiround chess gamemethod is scarce because a TBW’s
player needs to operate all his pieces during each round,
which is an essential difference with other ordinary chess
games. Thus, the number of situations generated by permu-
tation grows explosively such that, from this perspective, the
TBW’s AI can hardly be solved during regular playtime by the
game approach described previously.

This paper attempts to study TBW’s AI from the perspec-
tive of the chess game method. This is because the TBW’s
rules have many similarities with other chess games, and the
decision made every turn in a TBW can be made wisely as in
other chess games. In this paper, we propose two enumeration
methods in a single round: dictionary sequence enumeration
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Figure 3: An example of TBW:Here are four red units and four blue
units belonging to two players, respectively, on a square board. The
units are divided into sword men and archers. The number written
in the bottom right of each unit is the unit index. White tilts mean
their terrain can be entered. However, ochre ones marked by “𝐴”
illustrate hilly areas no unit can enter. The dark green tilts marked
by letter “𝐵” illustrate lakes or rivers, which also cannot be entered,
but archers can remotely attack the other side of the tilts.

and recursive enumeration, which is the fundamental prob-
lem in our new framework. The improvement in TBW’s AI
can not only bring more challenges to game players but
also bear a new series of game elements, such as smart AI
teammates, which will provide players with a new gaming
experience.

A TBW game is essentially the compound of combina-
tional optimization laterally and game tree search vertically
(Section 3.2), which can be regarded as a programming
problem ofmultiagent collaboration in stages and can be seen
as a tree search problemwith huge branching factor.Thus, the
expansion and development of the traditional systems hidden
behind TBW games will make the research more meaningful
than the game itself.

This paper first summarizes the general game model for
TBW and illustrates its key feature, that is, that the branching
factor is huge in comparison with traditional chess games.
Then, it puts forward two types of search algorithms for a
single round from different research angles: the dictionary
sequence enumeration method (Algorithm 2) and the recur-
sive enumeration method (Algorithm 5). Ensuring invari-
ability of the number of branches, Algorithm 5 has less exten-
sion operation of pieces than Algorithm 2 under a variety of
conditions.The experiments also confirmed this conclusion.

2. Game Module of Turn-Based War Chess

2.1. Rules. TBW is played on a square, hexagonal, or octago-
nal tile-basedmap. Each tile is a composite that can consist of
terrain types such as rivers, forests, andmountains or built up
areas such as bridges, castles, and villages (Figure 3). Each tile
imposes a movement cost on the units that enter them. This
movement cost is based on both the type of terrain and the
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Figure 4: Green tilts illustrate the movement range of a swordsman, whose movement point is 2. The movement cost of each tilt is 1. (a) No
obstacle. (b) Tilt 𝐴 is an obstacle and thus tilt 𝐵 is out of the movement range. (c) The swordsman cannot pass the enemy to reach tilt 𝐵. (d)
The swordsman can pass units of the same side to reach tilt 𝐵.

type of unit. Each tile is occupied by only one unit at the same
time.

Each player in a TWB game controls an army consisting
of many units. All units can either move or attack an enemy
unit. Each unit has an allotted number of movement points
that it uses to move across the tiles. Because different tiles
have different movement costs, the distance that a unit can
travel often varies. All of the tiles the unit can travel to
compose a union of them called movement range (Figure 4),
including the tile occupied by the unit itself. The movement
range can generally be calculated by some algorithm such as
breadth first search [18].

In addition to the movement point, each unit has its own
health point (Hp) and attack power (ATK), which are numer-
ical values and are various among the different units. Like
movement range, a unit’s attack range is another union of tiles
to which the unit can attack from its current tile (Figure 5).
Commonly, a unit’s attack range is determined by its attack
technique. Melee units, such as swordsmen, generally only
attack adjacent units, and thus their attack range looks like

that shown in Figure 5(a). Ranged attacking units, such as
archers, can attack enemies as far as two or more tiles away
(Figure 5(b)). Special units’ attack range is also a special one.
If a unit attacks another unit, it forfeits all of its movement
points and cannot take any further actions that turn; there-
fore, if a unit needs to be moved to a different tile, it must
perform the move action prior to performing an attack
action. A unit also has the option not to take any attack action
after its movement or even not to take any action and stay on
its current tile.

Each unit attacked by its enemy must deduct its Hp by
the attacking unit’s ATK, which indicates the damage. When
a unit’s Hp is deducted to or below 0, this indicates that it is
dead and must be removed from the board immediately. The
tilt it occupied becomes empty and can be reached by other
following units.

A game of TBW consists of a sequence of turns. On each
turn, every player gets their own turn to perform all of the
actions for each of their side’s units. This is unlike ordinary
board games, such as chess, where turns are only for selecting
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(a) Swordsmen’s attack range (b) Archer’s attack range

Figure 5: Units’ attack range.

a pawn tomove.The opposing side does not get to perform its
actions until the current side has finished. A player wins the
game if all of the units or the leader units of the other player
have died.

2.2. Setup and Notation. TBW is composed of the board and
pieces (units).The board is considered as an undirected graph
𝐺(𝑉, 𝐸), where 𝑉 is the set of vertices (tilts) and 𝐸 is the set
of edges that connect the neighboring tilts. Units are divided
into two parties 𝐴 (Alex’s) and 𝐵 (Billie’s) according to which
player they belong to.The sizes of the two parties are denoted
as 𝑛
𝐴
and 𝑛
𝐵
, respectively, and the indexes of the units in the

two parties are 1, 2, . . . , 𝑛
𝐴
and 1, 2, . . . , 𝑛

𝐵
, respectively. Let

𝑛 = 𝑛
𝐴

+ 𝑛
𝐵
be the total number of units. An assignment

𝑀 : [1, 𝑛] → 𝑉 places the units in unique tilts: ∀𝑖, 𝑗 ∈ [1, 𝑛],
𝑗 ̸= 𝑖 : 𝑀(𝑖) ∈ 𝑉, 𝑀(𝑗) ∈ 𝑉, 𝑀(𝑖) ̸= 𝑀(𝑗). For each unit,
there is a movement range 𝑅 ⊆ 𝑉, where 𝑟 = |𝑅|, and an
attack range 𝑅atk, where 𝑟atk = |𝑅atk|.

Let 𝑂𝑟𝑑
𝐶 be a sequence of elements in set 𝐶 such that

𝑂𝑟𝑑
𝐶

𝑖
is the 𝑖th element of this sequence. We denote 𝑛 = |𝐶|,

and thus 𝑂𝑟𝑑
𝐶

𝑖
∈ 𝐶 and ∀𝑖, 𝑗 ∈ [1, 𝑛], 𝑗 ̸= 𝑖 : 𝑂𝑟𝑑

𝐶

𝑖
̸= 𝑂𝑟𝑑
𝐶

𝑗
.

Let 𝑄𝐶 be a set of all sequences of the elements in set 𝐶
such that 𝑄𝐶 = {𝑂𝑟𝑑

𝐶

}. Thus, |𝑄𝐶| = 𝑃
𝑛

𝑛
.

Without loss of generality, let𝑂𝑟𝑑
𝐴 be an action sequence

of units in Alex’s turn such that 𝑂𝑟𝑑
𝐴

𝑖
expresses the index of

the unit doing the 𝑖th action, where 𝑖 ∈ [1, 𝑛
𝐴
].

2.3. Game Tree Search. We try to use game tree search theory
to research the AI of TBW. Game tree search is the most
popular model for researching common chess games. In the
game tree (Figure 6), nodes express states of the game board.
Branches derived from nodes express selections of the move
method.The root node is the current state, and the leaf nodes
are end states whose depths are specifically expanded from
the root. Both sides take turns. Even layer nodes belong to
the current player (squares), while odd layer nodes belong
to the other side (circles). If the leaf node is not able to give

a win-lose-draw final state, an evaluation on a leaf node is
needed to select the expected better method from the current
state; this is the function of game tree search. Game tree
search is based on min-max search, which is used to find
the best outcome for the player and the best path leading to
this outcome (Principal Variation) and, eventually, to find the
corresponding move method in the root state (Root Move),
that is, the best move for the player’s turn [19].

It is not difficult to see that the evaluation and search algo-
rithmare themost important parts of the game tree. For TBW,
the evaluation factor of the state generally involves powers,
positions, spaces, and motilities of units. The most common
algorithms of game tree search are Alpha-Beta search [20]
and Monte Carlo Tree Search [21], which can also be,
althoughnot directly, applied toTBW’s search.This is because
the branching factor of the search tree for TBW is huge and
the common algorithms applied to TBW’s search cause a
timeout.

3. Features and Complexity Analysis

3.1. Complexity Analysis. A game of TBW consists of a
sequence of turns. During each turn, every player gets their
own turn to perform all of the actions for each of their
side’s units, which is the most important feature of TBW.The
sequence of actions is vital.This is because the units cannot be
overlapped;moreover, a different sequence of actionswill also
have a different state when a unit of another side is eliminated
(Figure 7). Thus, during each side’s turn, all of the plans of
actions for its units are calculated by a permutation method.
The amount of plans is estimated fromboth theworst and best
situations (e.g., in the case of Alex’s turn).

Step 1. Determine the sequence of actions: the total number
is 𝑃𝑛𝐴
𝑛𝐴

= 𝑛
𝐴
!.

Step 2. Calculate the number of all plans of action in a
specified action sequence.
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Figure 7: Effect of actions sequence. (a)The initial state of red side’s turn. (b–d) Red swordsman number 1 acts and eliminates blue swordsman
number 1, followed by red swordsman number 2. (e–g) Red swordsman number 2 acts and eliminates blue swordsman number 1, followed
by red swordsman number 1.

Let 𝑅
𝑖
be the movement range of unit number 𝑖 such that

𝑟
𝑖

= |𝑅
𝑖
|. For simplicity, we assume that 𝑟

1
= 𝑟
2

= ⋅ ⋅ ⋅ =

𝑟
𝑛
𝐴 = 𝑟. In the worst case, themovement ranges of all ofAlex’s

units are independent without overlapping each other; that is,
∀𝑖, 𝑗 ∈ [1, 𝑛

𝐴
], 𝑗 ̸= 𝑖 : 𝑅

𝑖
∩ 𝑅
𝑗
= ⌀. Moreover, in the attack

phase, the amount of enemies that fall into each ofAlex’s units
reaches maximum. For example, on a four-connected board,
a melee unit has at most four adjacent tilts around it, which
are full of enemies.Then, the number of attack plans is atmost
five (including a plan not to attack any enemy), that is, 𝑟atk+1.

According to the multiplication principle, the number of
states expanding under a specified actions sequence is

[𝑟 (𝑟atk + 1)]
𝑛𝐴

. (1)

According to Step 1, the number of actions sequences is
𝑃
𝑛𝐴

𝑛𝐴

= 𝑛
𝐴
! and thus, in the worst situation, the number of

plans is

𝑆worst = [𝑟 (𝑟atk + 1)]
𝑛𝐴

× 𝑛
𝐴
!. (2)
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Figure 8:The growth trend of states 𝑆 following 𝑛
𝐴
under differentmovement points. (a)Movement point: 2, movement cost: 1; (b)movement

point: 5, movement cost: 1.

In the best situation, the movement ranges of all units
overlap completely such that 𝑅

1
= 𝑅
2
= ⋅ ⋅ ⋅ = 𝑅

𝑛
𝐴 = 𝑅. More-

over, there are no enemies in the attack range of every unit.
Thus, the amount of states can be calculated by the arrange-
ment number 𝑃𝑛𝐴

𝑟
such that we can select 𝑛

𝐴
from 𝑟 positions

to make all of the arrangements of the units. Therefore, the
number of plans in the best situation is

𝑆best =
𝑟!

(𝑟 − 𝑛
𝐴
)!

. (3)

Above all, the total number of plans under all action
sequences, denoted by 𝑆, is

𝑆best < 𝑆 ≤ 𝑆worst. (4)

In the following examples, we calculate the actual values
of the total plans 𝑆. For “Fire Emblem,” a typical ordinary
TBW game, both sides have five units, and in the open
battlefield, themovement range of each unit can reach atmost
61 tilts (in that map, each tilt is adjacent to four other tilts, the
movement point is 5, the movement cost of each tilt is 1, and
there is no obstacle). Thus, 𝑆best ≈ 710 million and 𝑆worst ≈

317 trillion. Assuming that the average computing time for
searching a plan is 200 nanoseconds, searching all plans for
one side’s turn will then take from 2.4 minutes to approxi-
mately two years. Note that in the formula 𝑛

𝐴
is a key factor

such that as it increases, the number of plans will dramatically
expand (Figure 8). For a large-scale TBW, such as “Battle
Commander,” whose units may amount to no less than a
dozen or dozens, the search will be more difficult.

Table 1: Branching factors comparison between TBW game and
other board games.

Branching
factor Comment

Chess [15] ≈30 Maximum branching factor is 40.
Go [16] ≈100

Amazons [17] ≈1500 There are 2176 branches in the
first turn.

TBW 710 million∼317
trillion

Suppose that the movement
point is 5, the movement cost is 1,
and the amount of units is 5 for
each side.

3.2. Features and Comparison. Compared with TBW games,
other board games (such as chess, checkers, etc.) only require
selecting a unit to perform an action in a single round, which
not only results in fewer single-round action plans but also
makes the number of plans linear with increasing numbers of
units (for the chess type played by adding pieces, such as Go
and Go-Moku, the number of plans is linear with increasing
amounts of empty grids on the board).The number of single-
round action plans corresponds to the size of the game tree
branching factor. Table 1 shows a comparison between TBW
games and some other ordinary board games that have more
branching factors. A large branching factor and a rapidly
expanding number of units are the key features by which the
TWB games are distinguished from other board games.

A TBW game is essentially the compound of combina-
tional optimization laterally and game tree search vertically
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Figure 9: Search tree of TBW game: (a) red side’s turn; (b) blue side’s turn.

(Figure 9). Vertically, it can be seen as a tree search problem
with a huge branching factor. Laterally, the relationship
between layers is a series of phased combination optimiza-
tions, which is like a programming problem of multiagent
collaboration. Therefore, the new game model generated
by the expansion of the explosive branches needs to be
researched by new algorithms.

Because the large number of states in a single round is the
key problembywhich the TBWgames are distinguished from
other board games, the optimization search and pruning of
a single round have become the most important issues and
processes for solving TBW games. That the search of a single

round can be efficiently completed guarantees that the entire
game tree can be extended. In the following, we propose two
single-round search algorithms and compare them.

4. Single-Round Search Algorithms

4.1. Algorithm 2:Dictionary Sequence EnumerationAlgorithm.
Each side of a TBW game (hereafter, unless otherwise stated,
referring specifically to Alex’s side) wants to achieve a single
turn search. Based on Section 3.1, we need to first determine
the sequence of actions of 𝑛

𝐴
units and then enumerate all of

the action plans of the units in each sequence.
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Input: the original permutation sequence
𝑂𝑟𝑑 = 𝑂𝑟𝑑

1
𝑂𝑟𝑑
2
⋅ ⋅ ⋅ 𝑂𝑟𝑑

𝑗−1
𝑂𝑟𝑑
𝑗
𝑂𝑟𝑑
𝑗+1

⋅ ⋅ ⋅ 𝑂𝑟𝑑
𝑘−1

𝑂𝑟𝑑
𝑘
𝑂𝑟𝑑
𝑘+1

⋅ ⋅ ⋅ 𝑂𝑟𝑑
𝑛

(1) find 𝑗 = max{𝑖 | 𝑂𝑟𝑑
𝑖
< 𝑂𝑟𝑑

𝑖+1
}

(2) if 𝑗 doesn’t exist then
(3) exit, and next permutation sequence doesn’t exist.
(4) else
(5) find 𝑘 = max{𝑖 | 𝑂𝑟𝑑

𝑖
> 𝑂𝑟𝑑

𝑗
}

(6) swap(𝑂𝑟𝑑
𝑗
, 𝑂𝑟𝑑

𝑘
)

(7) reverse the sub-sequence 𝑂𝑟𝑑
𝑗+1

⋅ ⋅ ⋅ 𝑂𝑟𝑑
𝑘−1

𝑂𝑟𝑑
𝑗
𝑂𝑟𝑑
𝑘+1

⋅ ⋅ ⋅ 𝑂𝑟𝑑
𝑛

(8) Output: 𝑂𝑟𝑑
󸀠

= 𝑂𝑟𝑑
1
𝑂𝑟𝑑
2
⋅ ⋅ ⋅ 𝑂𝑟𝑑

𝑗−1
𝑂𝑟𝑑
𝑘
𝑂𝑟𝑑
𝑛
⋅ ⋅ ⋅ 𝑂𝑟𝑑

𝑘+1
𝑂𝑟𝑑
𝑗
𝑂𝑟𝑑
𝑘−1

⋅ ⋅ ⋅ 𝑂𝑟𝑑
𝑗+1

is the
next permutation sequence.

(9) end if

Algorithm 1: next permutation(Ord).

(1) initialize a sequence 𝑂𝑟𝑑 which is the first sequence in dictionary sequences
(2) while 𝑂𝑟𝑑 exists do
(3) call Search(1)
(4) 𝑂𝑟𝑑 ← 𝑛𝑒𝑥𝑡 𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝑂𝑟𝑑)

(5) end while

Algorithm 2: Dictionary sequence enumeration algorithm.

4.1.1. Action Sequence of Units Algorithm. Determining an
action sequence of 𝑛

𝐴
units requires a permutation algorithm.

There are some famous permutation algorithms, such as the
recursivemethod based on exchange, the orthoposition trade
method, the descending carry method, and the dictionary
sequence method [22–25]. Their execution strategies are
different, their time and space complexities vary, and they
have been used in different problems. We first apply the
dictionary sequencemethod, whose time complexity is lower.
The idea of all permutation generation from 𝑛 elements (e.g.,
{1, 2, . . . , 𝑛}) is that with the beginning of the first sequence
(123 ⋅ ⋅ ⋅ 𝑛) a series of subsequent larger sequences are gen-
erated lexicographically until reaching the reverse order
(𝑛 ⋅ ⋅ ⋅ 321). The algorithm, called next permutation, which
generates the next sequence from an original one, is illus-
trated as in Algorithm 1.

For example, 754938621 is a sequence of numbers 1–9.The
next sequence obtained by this algorithm is 754961238.

4.1.2. Algorithm 2: Dictionary Sequence Enumeration Algo-
rithm. Enumerate all of the plans of units’ actions in a partic-
ular order. Because the search depth is limited (equal to the
number of units), depth-first search is an effective method.
Because the depth is not great, realizing the depth-first search
by the use of recursion requires smaller space overhead,
which leads to the sequential enumeration algorithm with
permutation and recursion, as in Algorithm 2.

Here Search(𝑖) is the algorithm for enumerating all of the
action plans of the 𝑖th unit (see Algorithm 3).

4.2. Algorithm 5: Recursive Enumeration Algorithm.
Algorithm 2 comes from a simple idea that always starts
enumeration from the first unit in every search for the next

sequence. However, compared with the previous sequence,
the front parts of units whose orders are not changed are not
required to be enumerated again, which creates redundant
computing and reduces efficiency. For example, when the
search of sequence 𝑂𝑟𝑑

1
, 𝑂𝑟𝑑
2
, . . . , 𝑂𝑟𝑑

𝑖
, . . . , 𝑂𝑟𝑑

𝑗
, . . . ,

𝑂𝑟𝑑
𝑛
is finished, if the next sequential order is adjusted only

from the 𝑖th to the 𝑗th unit, then in the recursive enumeration
phases the units from the first one to the 𝑖 − 1th can directly
inherit the enumeration results of the previous sequence and
we only need to enumerate the units from the 𝑖th to the last
one recursively. On the basis of this feature, we switch to the
recursive permutation algorithm to achieve the arrangement
so that the recursive algorithm combines with the recursive
depth-first search algorithm for the purpose of removing the
redundant computation, which is the improved algorithm
called the recursive enumeration algorithm illustrated as in
Algorithm 4.

In Algorithm 4, 𝑛 is the size of our sequence (lines (1),
(6)). With respect to the predefined procedure, we generate
the permutations from the 𝑖th to the last unit in the sequence
by calling the function recursive permutation(𝑖). The latter is
realized using the subpermutations from the 𝑖 + 1th to the
last unit in the sequence, which are generated by calling the
function recursive permutation(𝑖 + 1) recursively (lines (5)–
(11)). The index 𝑗 points to the unit swapped with the 𝑖th
unit (line (7)) in every recursive call, after which the two units
must resume their orders (line (9)), for the next step.

By initializing the sequenceOrd and running the function
recursive permutation(1), we can obtain a full permutation of
all the elements.

Based on the above, the improved single-round search
algorithm, called the recursive enumeration algorithm, is
described as in Algorithm 5.
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(1) if 𝑖 > 𝑛 then
(2) return
(3) else
(4) for each action plan of the 𝑖th unit
(5) execute the current plan
(6) call 𝑆𝑒𝑎𝑟𝑐ℎ(𝑖 + 1)

(7) cancel this plan and rollback to the previous state
(8) end for
(9) end if

Algorithm 3: Search(i).

(1) if 𝑖 ≥ 𝑛 then
(2) output the generated sequence 𝑂𝑟𝑑

1
, 𝑂𝑟𝑑
2
, . . . , 𝑂𝑟𝑑

𝑛

(3) return
(4) else
(5) 𝑗 ← 𝑖

(6) while 𝑗 ≤ 𝑛 do
(7) swap(𝑂𝑟𝑑

𝑖
, 𝑂𝑟𝑑

𝑗
)

(8) call 𝑟𝑒𝑐𝑢𝑟𝑠𝑖V𝑒 𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝑖 + 1)

(9) swap(𝑂𝑟𝑑
𝑖
, 𝑂𝑟𝑑

𝑗
)

(10) 𝑗 ← 𝑗 + 1

(11) end while
(12) end if

Algorithm 4: recursive permutation(i) (enumerate sequences from 𝑖th to the last element).

The framework of this new algorithm is similar to that of
the recursive permutation algorithm, where 𝑛 is the number
of units. In the new algorithm, all the action plans of the 𝑖th
unit, which involve selecting targets for attack, are enumer-
ated and executed separately (lines (7)-(8)) after the required
swap process. Then, after solving the subproblem using the
recursive callPlans Search(𝑖+1), a rollback of the current plan
is necessary and the state needs to be resumed (line (10)).

To enumerate the actions plans of all the units, the
sequence 𝑂𝑟𝑑 is initialized, and then the function Plans
Search(1) runs.

From step (3) of Algorithm 5, before enumerating the
action plans of the unit, we do not need to generate all of the
sequences; that is, for each unit, determination of its order
and enumeration of its actions are carried out simultaneously.

4.3. Comparison. First, we compare the time complexities of
the two algorithms.

The time consumption of the recursive enumeration
algorithm lies in an 𝑛 times loop and an 𝑛−1 times recursion,
such that the time complexity is𝑂(𝑛(𝑛−1)(𝑛−2) ⋅ ⋅ ⋅ 1) = 𝑂(𝑛!)

[23]. It is the same as the time complexity of the dictionary
sequence enumeration algorithm [23]. Moreover, the states
searched by the two algorithms are also the same.

Theorem 1. The states searched by Algorithms 2 and 5 are the
same.

Proof. Suppose 𝑆(𝑂𝑟𝑑) is the set of the states in the sequence
𝑂𝑟𝑑, and Pre

𝑎
are the sequences beginning with 𝑎 in 𝑄

𝐴.

According to Algorithm 2, it first determines the order of a
sequence 𝑂𝑟𝑑 and then enumerates all of the states 𝑆

1
under

this sequence:

𝑆
1
= ⋃

𝑂𝑟𝑑
𝐴
∈𝑄
𝐴

𝑆 (𝑂𝑟𝑑
𝐴

) . (5)

According to the outermost layer of the recursion in
Algorithm 5, we can obtain all of the states 𝑆

2
:

𝑆
2
= ⋃

𝑎∈𝐴

𝑆 (Pre
𝑎
) . (6)

Because ∪
𝑎∈𝐴

Pre
𝑎
= 𝑄
𝐴 and ∪

𝑂𝑟𝑑
𝐴
∈𝑄
𝐴𝑆(𝑂𝑟𝑑

𝐴

) = 𝑆(𝑄
𝐴

),
therefore, 𝑆

1
= 𝑆
2
.

The difference between Algorithms 2 and 5 reflects the
efficiency of their enumerations. In the searching process, an
important atomic operation (ops1) expands each unit’s action
plan on each position itmoves to.This is because (1) the states
taken by search are mainly composed of every unit moving
to every position and (2) every unit arriving at every position
and then attacking or choosing other options for action is a
time-consuming operation in the searching process. Suppose
the number of ops1 in Algorithms 2 and 5 is 𝐻

1
and 𝐻

2
,

respectively. For simplicity, we make the following assump-
tions.

Assumption 2. Assume that every unit’s movement range
does not overlap another’s, the sizes ofwhich are all equal; that
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(1) if 𝑖 > 𝑛 then
(2) return
(3) else
(4) 𝑗 ← 𝑖

(5) while 𝑗 ≤ 𝑛 do
(6) swap(𝑂𝑟𝑑

𝑖
, 𝑂𝑟𝑑

𝑗
)

(7) for each action plan of the 𝑖th unit
(8) execute the current plan
(9) call 𝑃𝑙𝑎𝑛𝑠 𝑆𝑒𝑎𝑟𝑐ℎ(𝑖 + 1)

(10) cancel this plan and rollback to the previous state
(11) end for
(12) swap(𝑂𝑟𝑑

𝑖
, 𝑂𝑟𝑑

𝑗
)

(13) 𝑗 ← 𝑗 + 1

(14) end while
(15) end if

Algorithm 5: Recursive enumeration algorithm: 𝑃𝑙𝑎𝑛𝑠 𝑆𝑒𝑎𝑟𝑐ℎ(𝑖) (search action plans from 𝑖th to the last unit).

is, |𝑅
1
| = |𝑅

2
| = ⋅ ⋅ ⋅ = |𝑅

𝑛
| = 𝑟, and 𝑅

1
∩ 𝑅
2
∩ ⋅ ⋅ ⋅ ∩ 𝑅

𝑛
= ⌀.

Moreover, every unit cannot attack after moving (i.e., none of
the enemies are inside the attack range).

In the following, we calculate 𝐻
1
and 𝐻

2
, respectively.

In Algorithm 2, in each identified sequence, ops1 corre-
sponds to the nodes of the search tree formed by enumerating
states (except the root node, which represents no action).The
depth of the tree is 𝑛, and each of the branching factors is 𝑟;
then, the number of nodes is 𝑟𝑛 + 𝑟

𝑛−1

+ ⋅ ⋅ ⋅ + 𝑟. Moreover, the
number of all sequences is 𝑃𝑛

𝑛
= 𝑛! and therefore

𝐻
1
= 𝑛! (𝑟

𝑛

+ 𝑟
𝑛−1

+ ⋅ ⋅ ⋅ + 𝑟) . (7)

InAlgorithm 5, suppose that the number of ops1 of 𝑛units
is ℎ
𝑛
. The first unit performing an action according to the

order of the current sequence is 𝑎. According to Algorithm 5,
every time 𝑎moves to a tilt, it willmake a new state combining
the following 𝑛 − 1 units, such that the number of the ops1
is 1 + ℎ

𝑛−1
. Because the number of tilts 𝑎 can move to is 𝑟

and the recursion operates 𝑛 times, we can deduce that ℎ
𝑛
=

𝑛𝑟(1 + ℎ
𝑛−1

), where ℎ
1
= 𝑟; thus,

𝐻
2
= ℎ
𝑛
= 𝑛!

𝑛−1

∑

𝑖=0

𝑟
𝑛−𝑖

𝑖!
. (8)

Accordingly,

𝐻
1
− 𝐻
2
= 𝑛!

𝑛−1

∑

𝑖=2

𝑖! − 1

𝑖!
𝑟
𝑛−𝑖

. (9)

It is easy to see that the number of ops1 of Algorithm 5 is
smaller than that of Algorithm 2. Table 2 lists the experi-
mental results, showing 𝐻

1
under Assumption 2, 𝐻

2
under

a general condition, and their differences.

Conclusion. On the premise that the search states are exactly
the same, Algorithm 5 is better than Algorithm 2 regarding
the consumption of ops1 and actual running time.

5. Experimental Evaluation

In this section, we present our experimental evaluation of the
performance of Algorithms 2 and 5 under all types of con-
ditions and their comparison. Because they are both single-
round search algorithms, we set only one side’s units on the
board, ignoring the other side’s, whose interference is equiva-
lent to narrowing the range of units’ movement. Experiments
are grouped based on the following conditions: the number
of units, the unit’s movement point, and the dispersion of
units. The number of units is set to 3 and 4 (setting to 2 is
too simple with a lack of universality, while setting to 5 leads
to timeout). The movement point is set to 2, 3, and 4, and the
movement cost of each tilt is set to 1. The dispersion is set to
the most dispersive ones and the most centralized ones. The
most dispersive cases mean that the movement ranges of all
of the units are independent without overlapping each other,
corresponding to the worst case in Section 3.1. The most
centralized cases mean that all of the units are put together
(Figure 10), which maximizes the overlap degree and cor-
responds to the best case in Section 3.1. The experimental
groups set above cover all of the actual situations. The board
used in the experiments is completely open without any
boundary and barrier. The case of a board with boundaries
and barriers can be classified into caseswhere a smallermove-
ment point of units is set. The experimental tool is a PC with
Intel Core i7-2600@2.40GHzCPUand 4.00GBmemory, and
the program was written with Visual C++ 2005 with opti-
mized running time.

From Table 2, we can see that in all cases the number of
ops1 of Algorithm 5 is less than that of Algorithm 2 for differ-
ent levels. Assuming that the number of units is invariable, the
optimization level of Algorithm 5will become low by increas-
ing the movement point, which can be deduced from (8)
and (9): under Assumption 2, �̂�ops1 which shows the reduced
percentage of using ops1 in Algorithm 5 instead of in
Algorithm 2 is

�̂�ops1 =
𝐻
1
− 𝐻
2

𝐻
1

=
∑
𝑛−1

𝑖=2
((𝑖! − 1) /𝑖!) 𝑟

𝑛−𝑖

∑
𝑛−1

𝑖=0
𝑟
𝑛−𝑖

. (10)



12 International Journal of Computer Games Technology

Table 2: (a) For three units, the comparison of ops1 under different movement points and different dispersions. (b) For four units, the
comparison of ops1 under different movement points and different dispersions.

(a)

Movement point 2 Movement point 3 Movement point 4
Dispersed Compact Dispersed Compact Dispersed Compact

Algorithm 2 14274 9804 97650 79260 423858 371652
Algorithm 5 14235 9771 97575 79191 423735 371535
𝐷ops1
∗ 0.27% 0.34% 0.077% 0.087% 0.029% 0.031%

�̂�ops1
∗∗ 0.30% 0.080% 0.030%

(b)

Movement point 2 Movement point 3 Movement point 4
Dispersed Compact Dispersed Compact Dispersed Compact

Algorithm 2 742560 345264 9765600 6394800 69513696 53301744
Algorithm 5 740272 343804 9757600 6388468 69492704 53283548
𝐷ops1
∗ 0.31% 0.42% 0.082% 0.099% 0.030% 0.034%

�̂�ops1
∗∗ 0.30% 0.080% 0.030%

∗

𝐷ops1 shows the reduced percentage of using ops1 in Algorithm 5 instead of in Algorithm 2.
∗∗

�̂�ops1 shows the estimated value of𝐷ops1 under Assumption 2.

(a) (b)

Figure 10: (a) Compact placement of three units. (b) Compact placement of four units.

In (10), the numerator is the infinitesimal of higher order
of the denominator; that is,

�̂�ops1 ≈
1

2
𝑟
−2

. (11)

Table 2 lists the values of �̂�ops1 when themovement point
is 2, 3, and 4, which are consistent with the experimental
results.

Under the same conditions of the movement point and
the number of units, the value of 𝐷ops1 with compact units
is more than that with dispersed units. This is because the
more the units are compact, the stronger the interference the
units will cause to each other, which is equivalent to a narrow
movement range of 𝑟. According to (11), therefore, 𝐷ops1
will increase correspondingly. Moreover, under the same
conditions of the movement point and the degree of units’

dispersion, 𝐷ops1 will also increase with the increase of the
number of units. In summary, the experiments show that,
regardless of whether Assumption 2 is satisfied, Algorithm 5
always performs better than Algorithm 2 on the number
of ops1, which coincides with �̂�ops1 from (11). Because the
degree of optimization is not very prominent, the running
times of these two algorithms are almost the same.

6. Conclusions

Based on a modest study of turn-based war chess games
(TBW), a common gaming model and its formal description
are first proposed. By comparisonwith other chess typemod-
els, the most important feature of TBW has been discussed:
the player needs to complete actions for all of his units in a
turn, which leads to a huge branching factor. Then, a game
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tree theory framework to solve this model is proposed.
Finally, two algorithms for single-round search from themost
complex part of the framework are proposed: Algorithm 2
is the dictionary sequence enumeration algorithm and
Algorithm 5 is the recursive enumeration algorithm. Finally,
based on theoretical derivations and experimental results,
respectively, the completeness of these algorithms is proven.
Also, the performance comparison shows that under all
conditions the number of ops1 of Algorithm 5 decreases to a
certain extent compared to that of Algorithm 2.

Although these two algorithms are designed from clas-
sical algorithms, they can be used to solve the single-round
search problem completely and effectively. Moreover, the
research angles of the two algorithms are completely different,
which provide two specific frameworks for a further study on
TBW.

(1) The dictionary sequence enumeration algorithm is
implemented in two steps. The first step consists of
the generation of sequences; and the second step
consists of the enumeration of action plans under
these sequences.Therefore, this algorithm is based on
sequences. Different permutation algorithms can be
used to generate different orders of sequences, which
may be more suitable for new demands. For instance,
the orthoposition trade method [23] can minimize
the difference of each pair of adjacent sequences.
Thus, more action plans from the former sequence
can be reused for the next, which can improve the
efficiency.

(2) The recursive enumeration algorithm is also imple-
mented in two steps. The first step consists of the
enumeration of action plans of the current unit; and
the second step consists of the generation of the
sequences of the next units. Therefore, this algorithm
is based on action plans. Pruning bad action plans in
the depth-first search process can easily cut off all the
following action sequences and action plans of later
units, which will lead to a significant improvement of
efficiency.

In the current era of digital entertainment, TBW games
have broad application prospects. They also have a profound
theoretical research value. However, in this study, TBW the-
ory has been discussed partially.The gamemodel framework
we proposed is composed of the combinatorial optimization
problem on one hand, and the game tree search problem on
the other hand. Thus, our future research will mainly start
with the following two points:

(1) Introduce the multiagent collaborative planning
approach to efficiently prune the huge branches of the
game tree. Moreover, by introducing the independent
detection approach [26], we can separate the inde-
pendent units that have no effect on each other into
different groups with the purpose of decreasing the
number of units in each group.

(2) Introduce the Monte Carlo Tree Search method to
simulate the deep nodes. The single-round search

algorithms proposed in this paper are complete algo-
rithms and can be used to verify the performance of
the new algorithm.
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“Using double-oracle method and serialized alpha-beta search
for pruning in simultaneous move games,” in Proceedings of the
23rd International Joint Conference on Artificial Intelligence, pp.
48–54, AAAI Press, Beijing, China, August 2013.

[21] A. Guez, D. Silver, and P. Dayan, “Scalable and efficient Bayes-
adaptive reinforcement learning based on Monte-Carlo tree
search,” Journal of Artificial Intelligence Research, vol. 48, pp.
841–883, 2013.

[22] R. Sedgewick, “Permutation generation methods,” ACM Com-
puting Surveys, vol. 9, no. 2, pp. 137–164, 1977.

[23] D. E. Knuth,TheArt of Computer Programming Vol. 4A: Combi-
natorial Algorithms, Part 1, The People’s Posts and Telecommu-
nications Press, Beijing, China, 2012.

[24] B. R. Heap, “Permutations by interchanges,”TheComputer Jour-
nal, vol. 6, no. 3, pp. 293–298, 1963.

[25] F. M. Ives, “Permutation enumeration: four new permutation
algorithms,” Communications of the ACM, vol. 19, no. 2, pp. 68–
72, 1976.

[26] G. Sharon, R. Stern, M. Goldenberg, and A. Felner, “The
increasing cost tree search for optimalmulti-agent pathfinding,”
Artificial Intelligence, vol. 195, pp. 470–495, 2013.



International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive  
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation 
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation 
http://www.hindawi.com

Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and 
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of


